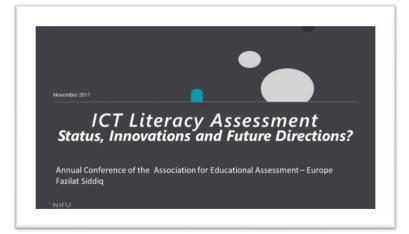


Ethical considerations involving data analytics in educational assessment: A systematic literature review


Damian Murchan & Fazilat Siddiq

Trinity College Dublin & the University of South-Eastern Norway (USN eDU)

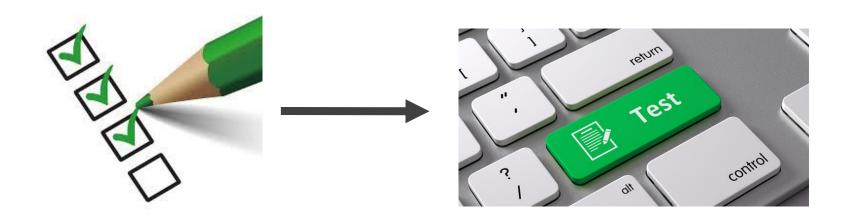
Opportunity versus Challenge: Exploring Usage of Log-File and Process Data in International Large Scale Assessments, Dublin, Ireland, 16 May 2019

Our interest in the topic...

Siddiq, 2017 - Keynote AEA-Europe

2018

Murchan & Oldham, 2017



Context

Logfile data, Learning analytics, Data mining, Big data, etc..

Process Data

- Part of modern life.
- Accelerated by scale of digital data.
- Information that goes beyond primary outputs from engagement with technology. Webpages visited, time spent, breaks taken....
- A big employer, reaching into business, retail, politics,

DATA ANALYST - INSURANCE CUSTOMER ANALYTICS

Log Files – Broader Picture

Big data

Loose term with no arbitrary cutoff point regarding size (Wang, 2017). Relation of Big Science. Characterised by the 3 Vs: Volume, Velocity, Variety (Boyd & Crawford, 2012) Applications in political science, public health, economics, criminology.... Education.

Education Data Mining

Methods and techniques from statistics, machine learning and data mining to reveal patterns in educational data and answer questions (PISA, other tests, research...)

Learning analytics

Measurement, collection, analysis and reporting of data about learners and their contexts, for purposes of understanding and optimising learning and the environments in which it occurs (SoLAR) cited by Siemens (2012).

Log files

Time-stamped records of students' navigational choices while using a computerised environment (Barab, Bowdish & Lawless, 1997).

Learning Analytics

Advantages

- Curriculum improvement
- > Instructor improvement
- > Assist with employment predictions
- Model student learning outcome, behaviour, process
- Personalised learning pathways
- Personalised interventions
- Real-time scaffolds
- Detailed monitoring and analysis of individuals
- **>**
- **>**

Challenges

- Complex data collection over multiple systems
- Data analysis
- Data security
- Misuse of data
- Ethical & Privacy issues, Consent
- **>**
- **>**

The 3 whats of Innovation (Rojas 2014)

1. What is this?

- Data on correct/incorrect/partial knowledge, plus...
- Added data on time management, student engagement, time on task, fatigue, engagement strategy...

2. What can we do with it?

- Develop a broad profile on learner/examinee based on actions; Make inferences based on the actions & behaviours (may be wrong)
- Improve measurement, with added data
- Shape and facilitate better learning

3. What are the rules for it?

- National/Intl. data protection regulations
- Professional ethics
- Institutional guidelines......

Will you graduate or drop out from college? Ask 'big data'

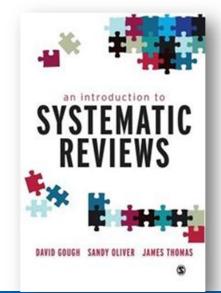
Universities are using predictive analytics to spot students in danger of dropping out

O Tue, Sep 25, 2018, 00:00

Jenna Clarke-Molloy

A growing number of Irish universities are using predictive analytics to spot students in danger of dropping out. Photograph: iStock

Research questions


- 1. To what extent are ethical considerations reflected in recent research that draws on logfile data/Learning Analytics derived from assessment of students?
- 2. To what extent does the research literature reflect regulatory issues and developments in relation to analysis of such process data?
- 3. What specific issues arise in relation to ethics given conceptual and technical developments in logfile analyses of student assessment data?

Study Design - Systematic literature review

Campbell Collaboration (2012); Gough et al., (2012);

Petticrew & Roberts (2006); Boland, Cherry & Dickson (2017)

Method – Search protocol

FOUR Elements (initial)

Log Files

Ethics,
Regulations

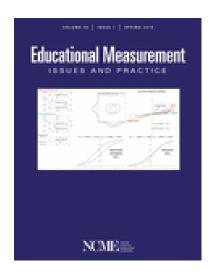
GOVERNANCE

ASSESSMENT & FORMAT

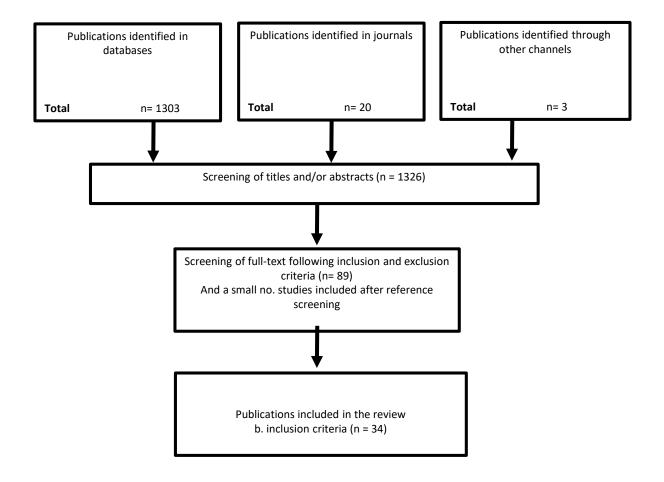
ANALYTICS

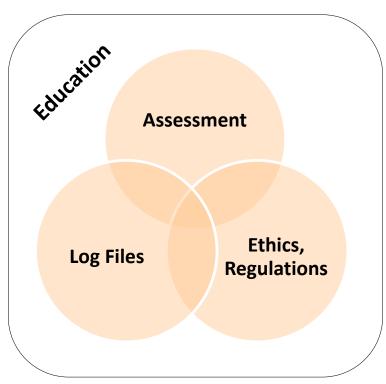
EDUCATION

Method - Search application

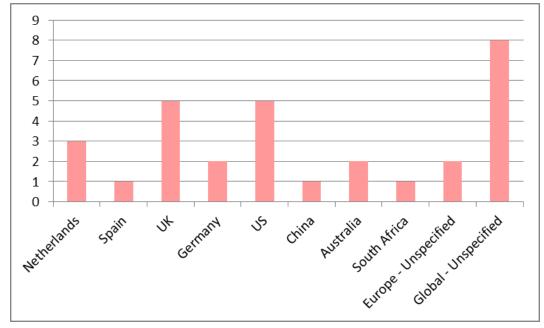

	Two Databases	ERIC, Web of Science	
1	Electronic Search – 4 elements	Governance, Assessment & format; Analytics, Education	= 1301 studies
2	Title & Abstract Screening – Inclusion/Exclusion Criteria	English; Publication Type; K-12/College; Achievement-Assessment-Outcomes; Analytics/Logfiles.	= 66
3	Full-text screening (FT)	Meet original criteria; Nature of publication; Content relates to 3 RQs	= 25
4	FT Coding, Data extraction & Analysis	Study aim, Design, Assessment format, Assessment purpose, Specific findings/issues in relation to 3 RQs	

Journals

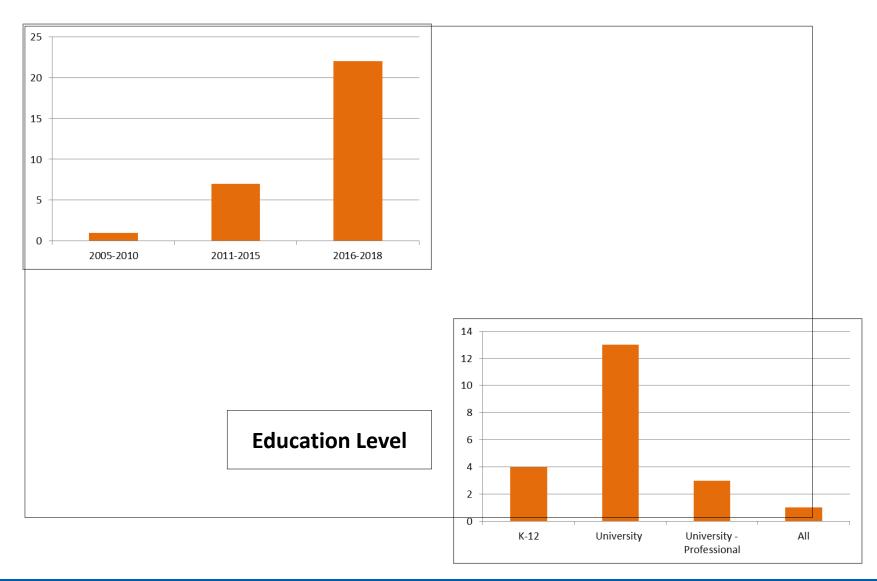


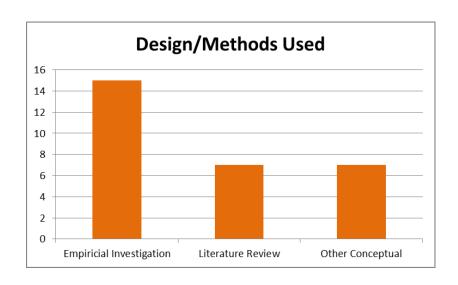

Selection criteria

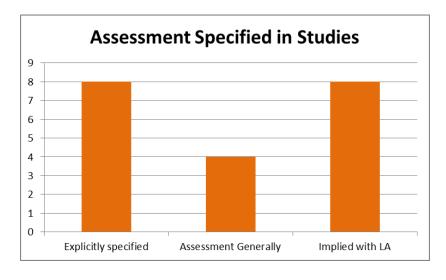
Inclusion criteria (Title & Abstracts)


- 1. Published in English
- 2. Published as a Conference proceedings, Report, Book or Paper in a Refereed journal
- 3. K-12, and/or College and University educational settings
- 4. Use of student achievement/attainment/test results or outcomes
- 5. Abstract contains specific reference to use of learning analytics, data analytics or log-files as part of the study

Studies included




Preliminary findings



..... Findings

..... Findings

Types of Assessment – Log File Analysis

- ✓ Computer simulation undergraduate (Angeli et al, 2017)
- ✓ Homework (Cao et al, 2009)
- ✓ Summative, formative (Drachsler & Kalz, 2016; Faber et al, 2017)
- ✓ Unspecified results from university courses (Dyckhoff et al, 2012; Rodriguez et al, 2016)
- ✓ Speaking skills, higher order skills (Pena-Ayala, 2018)
- ✓ E-portfolio (van der Schaaf et al, 2017; van der Stappen & Lee, 2018; Watson et al, 2017)
- ✓ Student blogs & posts (Watson et al, 2017)
- ✓ Large scale assessment (Wolf et al., 2014; Zeide, 2017).

Assessment issues - discussion

- Overall small number of studies focused on assessmentAssessment lagging behind?
- Timestamping examinee awareness?
- K12 College divide
- Need for updated Assessment Guidelines/Frameworks?

Let us know your thoughts

Parting Thoughts

- 1. Commercial practices increasingly evident in education data systems, e.g. recommender systems. Unlikely to reverse.
- 2. A wealth of technical advances evident; not matched with detail about how issues of privacy and ethics addressed.
- 3. Consent; Transparency; Access; Responsibility; Privacy; Stewardship; Avoid negative impact
- 4. Log file analysis can lead to mistaken inferences; validity and ethical issue
- 5. Students consent to taking assessments... what is their level of consent for subsequent analysis and interpretations of process data?
- 6. Avoid mistrust in relation to log-file analyses.

Limitations & Next Steps

References

Angeli, C., Howard, S. K., Ma, J., Yang, J., & Kirschner, P. A. (2017). Data mining in educational technology classroom research: Can it make a contribution? *Computers & Education*, 113, 226-242. doi:10.1016/j.compedu.2017.05.021

Arnold, K. E. & Sclater, N. (2017). Student perceptions of their privacy in learning analytics applications. Proceedings of LAK '17, March 13-17, 2017, Vancouver, BC, Canada. DOI: http://dx.doi.org/10.1145/3027385.3027392

Avella, J. T., Kebritchi, M., Nunn, S. G., & Kanai, T. (2016). Learning Analytics Methods, Benefits, and Challenges in Higher Education: A Systematic Literature Review. *Online Learning*, 20(2), 13-29.

Bennett, R. E. (2014). Preparing for the Future: What Educational Assessment Must Do. Teachers College Record, 116(11).

Cao, X., He, K., & Hu, S. (2009). The Design of Online Learning Process Analysis and Mining System.

Cormack, A. (2016). A Data Protection Framework for Learning Analytics. Journal of Learning Analytics, 3(1), 91-106.

Drachsler, H., & Kalz, M. (2016). The MOOC and Learning Analytics Innovation Cycle (MOLAC): A Reflective Summary of Ongoing Research and Its Challenges. *Journal of Computer Assisted Learning*, 32(3), 281-290.

Dyckhoff, A. L., Zielke, D., Bultmann, M., Chatti, M. A., & Schroeder, U. (2012). Design and Implementation of a Learning Analytics Toolkit for Teachers. *Educational Technology & Society*, 15(3), 58-76.

Ekowo, M., Palmer, I., & New, A. (2016). The Promise and Peril of Predictive Analytics in Higher Education: A Landscape Analysis. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=ED570869&site=ehost-live

Faber, J., M., Luyten, H., & Visscher, A. J. (2017). The effects of a digital formative assessment tool on mathematics achievement and student motivation: Results of a randomized experiment. Computers & Education, 106, 83-96.

Ferguson, R.. & Clow, D (2017). Where is the evidence: A call to action for learning analytics. Proceedings of LAK '17, March 13-17, 2017, Vancouver, BC, Canada. DOI: http://dx.doi.org/10.1145/3027385.3027396

Greller, W., & Drachsler, H. (2012). Translating Learning into Numbers: A Generic Framework for Learning Analytics. Educational Technology & Society, 15(3), 42-57.

Hildebrandt, M. (2017). Learning as a Machine: Crossovers between Humans and Machines. Journal of Learning Analytics, 4(1), 6-23.

Howell, J. A., Roberts, L. D., Seaman, K., & Gibson, D. C. (2018). Are We on Our Way to Becoming a "Helicopter University"? Academics' Views on Learning Analytics. *Technology, Knowledge and Learning*, 23(1), 1-20.

Ifenthaler, D., & Schumacher, C. (2016). Student Perceptions of Privacy Principles for Learning Analytics. Educational Technology Research and Development, 64(5), 923-938.

References

Ifenthaler, D., & Tracey, M. W. (2016). Exploring the relationship of ethics and privacy in learning analytics and design: implications for the field of educational technology. *Etr&D-Educational Technology Research and Development*, 64(5), 877-880. doi:10.1007/s11423-016-9480-3

Levy, S.T. & Wilensky, U. (2011). Mining students' inquiry actions for understanding of complex systems. Computers & Education, 56, 556-573.

MacNeill, S., Campbell, L. M., & Hawksey, M. (2014). Analytics for Education. *Journal of Interactive Media in Education*.

Pena-Ayala, A. (2018). Learning analytics: A glance of evolution, status, and trends according to a proposed taxonomy. Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery, 8(3). doi:10.1002/widm.1243

Prinsloo, P., & Slade, S. (2017). An elephant in the learning analytics room - the obligation to act. Proceedings of LAK '17, March 13-17, 2017, Vancouver, BC, Canada. DOI: http://dx.doi.org/10.1145/3027385.3027406

Rodríguez-Triana, M. J., Martínez-Monés, A., & Villagrá-Sobrino, S. (2016). Learning Analytics in Small-Scale Teacher-Led Innovations: Ethical and Data Privacy Issues. *Journal of Learning Analytics*, 3(1), 43-65.

Sclater, N. (2016). Developing a Code of Practice for Learning Analytics. Journal of Learning Analytics, 3(1), 16-42.

Timmis, S., Broadfoot, P., Sutherland, R., & Oldfield, A. (2016). Rethinking Assessment in a Digital Age: Opportunities, Challenges and Risks. *British Educational Research Journal*, 42(3), 454-476.

van der Schaaf, M., Donkers, J., Slof, B., Moonen-van Loon, J., van Tartwijk, J., Driessen, E., . . . Ten Cate, O. (2017). Improving Workplace-Based Assessment and Feedback by an E-Portfolio Enhanced with Learning Analytics. *Educational Technology Research and Development*, 65(2), 359-380.

van der Stappen, E., & Ieee. (2018). Workplace Learning Analytics in Higher Engineering Education. In *Proceedings of 2018 Ieee Global Engineering Education Conference* (pp. 15-20).

Wang, Y. (2016). Big Opportunities and Big Concerns of Big Data in Education. TechTrends: Linking Research and Practice to Improve Learning, 60(4), 381-384.

Watson, C., Wilson, A., Drew, V., & Thompson, T. L. (2017). Small Data, Online Learning and Assessment Practices in Higher Education: A Case Study of Failure? Assessment & Evaluation in Higher Education, 42(7), 1030-1045.

Wolf, M. A., Jones, R., Hall, S., Wise, B., & Alliance for Excellent, E. (2014). Capacity Enablers and Barriers for Learning Analytics: Implications for Policy and Practice. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=ED557924&site=ehost-live

http://all4ed.org/reports-factsheets/capacity-enablers-and-barriers-for-learning-analytics-implications-for-policy-and-practice/

damian.murchan@tcd.ie

@damianmurchan

fazilat.siddiq@usn.no

https://www.researchgate.net/profile/Fazilat_Siddiq